Soil Health & Restoring Soil Function

Marlon Winger
NRCS – Soil Health Division
Regional Soil Health Specialist
Idaho, Montana, Wyoming
Growing ag Media Interest
Soil Health Campaign

✓ Raised awareness
✓ Expanded demand for system adapted information
✓ Raising many good questions
Why in 2016?

World population is estimated to be at 9.1 billion by 2050.

To sustain this level of growth, food production will need to rise by 70 percent.

Between 1982-2007, 14 million acres of prime farmland in the U.S. was lost to development.

Energy demands:
- Increase use of biofuels (40% of corn used for ethanol)
- Increase use of fertilizer (use of Anhydrous up 48%, Urea up 93%)
- Phosphorous is a finite resource.
Soil Health What is It?

The continued capacity of the soil to function as a vital living ecosystem that sustains plants, animals, and humans

• Nutrient cycling
• Water (infiltration & availability)
• Filtering and Buffering
• Physical Stability and Support
• Habitat for Biodiversity (90% is mediated by soil microbes)
Soil is a Living Factory

Macroscopic and microscopic organisms
- Food
- Water
- Shelter
- Habitat
- **Powered by sunlight**

Management activities improve or degrade soil health
- Tillage
- Fertilizer
- Pesticides
- Grazing
- Plant Diversity
Ray Styer-NC

Dave Brandt-OH

Brandon Rockey-CO

Gabe Brown-ND

Ray McCormick-IN
Ecology:
The study of relationships between people, animals, and plants, and their environment.

Interconnectedness

Soil Surface
How do these Ecosystem Flourish Without Human Inputs?
Characteristics of a Stable Ecosystem

- Low Disturbance
- High Diversity
- Low Human Inputs
- Highly Functioning Eco services

Farm or Ranch

Bacterial Natural Flow of Energy

Balanced

Fungal

Steady State
This soil is naked, hungry, thirsty and running a fever!
Erosion from bare fields into river

Sediment is still the largest water quality pollutant by volume

Oklahoma, October 2012, I-35

Lubbock, Texas Oct. 17, 2011
The Battle is Won or Lost Here
Agricultural soils do not have a water erosion/runoff problem, they have a water infiltration problem.
Understands Soil Function!

Does Not Understand Soil Function!
Soil Disturbances that Impact Soil Health

<table>
<thead>
<tr>
<th>Physical</th>
<th>Tillage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compaction</td>
</tr>
<tr>
<td>Biological</td>
<td>Lack of Plant Diversity</td>
</tr>
<tr>
<td></td>
<td>Over grazing</td>
</tr>
<tr>
<td>Chemical</td>
<td>Misuse of fertilizer, pesticides, manures and soil amendments</td>
</tr>
</tbody>
</table>
What is Tillage?

The physical manipulation of the soil for the purpose of:

- Management of previous crop residue
- Control of competing vegetation (weeds)
- Incorporation of amendments (fertilizer/manure)
- Preparation of a soil for planting equipment
- Recreation for folks who don’t fish or golf.
What Tillage does to the Soil

- Destroys aggregates
- Exposes organic matter to decomposition
- Compacts the soil
- Damages soil fungi
- Reduces habitat for the Soil Food Web
- Disrupts soil pore continuity
- Increases salinity at the soil surface
Management Changes Soil Properties & Capacity of Soil to Function

Forest
SOM = 4.3%

CT 17 yr
Soybean Monoculture SOM = 1.6%

62.8% loss of SOM after 17 yr intensive tillage
Biological Disturbance

- **No diversity in the crop rotation**
 - Growing single species or few crops in rotation
 - Lack of diversity limits diversity of plant root exudates
 - Hampers the development of a diverse soil biota

- **Overgrazing**
 - Plants are exposed to intensive grazing for extended periods of time, without sufficient recovery periods
 - Many pasture have single species grasses
1. Reduced root mass
2. Increased weeds
3. Reduced soil fungi
4. Reduced water infiltration
5. Increased soil temperature
6. Diminished soil habitat
Alternative water sources & controlled access to stream but no control of grazing time on watershed
Soil Health in pasture systems
Overgrazing: another source of disturbance
Diversity of roots in nature

1. Prairie Dropseed
2. Prairie Dock
3. Big Bluestem
4. Pale Purple Coneflower
5. Little Bluestem
6. Black Eyed Susan
7. Indiangrass
8. Showy Sunflower
9. White False Indigo
10. Prairie Cordgrass
Chemical disturbances: Over-application of pesticides, fertilizers, amendments & manures
Impact of Fertilizer on Soil Health

- Short-circuits the rhizosphere & P cycle
- Depresses activity of natural N fixers
- Stimulates bacterial decomposition of SOM
- Excess N at risk for leaching or denitrification
- Increased soil salinity (Synthetic fertilizers are salts)
Paradigm Shifts

Paradigm shift #1 Stop treating the symptoms of dysfunctional soil; solve the problem of dysfunctional soil.

Paradigm shift #2 Restoring soil function can be accomplished without going broke.
 ◦ Apply basic principles of ecology to create quality habitat.

Paradigm shift #3 Conservation practices do not restore soil health, understanding soil function restores soil health.
Managing for Soil Health

Keep the soil armored with plants and plant residues
Minimize disturbance of the soil
Maximize diversity of plants
Keep living roots in the soil as much as possible
Incorporate livestock into the cropping system

Create the most favorable habitat possible for the soil food web
Soil Health Is Understanding How the Soil is Designed to Function and Managing it Accordingly